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Abstract—A numerical model that explicitly considers the 
rupture of the ice deposit by including the mechanical properties 
of ice into the model is proposed. This model calculates the 
dynamic effects of ice shedding induced by an external shock 
load on a single-span overhead line section. The model can serve 
as a basis to study various failure criteria of atmospheric glaze 
ice in terms of axial and bending stress-strain relations and 
strain-rate effects, in particular. A comparison of numerical and 
experimental results of a level single-span reduced-scale 
experimental model is presented in an attempt to validate the 
numerical model.   

I.  INTRODUCTION 
N cold regions, overhead line cables and their supporting 
structures are usually exposed to atmospheric icing. In 

addition, global climate warming is expected to increase the 
risks associated with extreme weather events which in turn 
could possibly increase the frequency and severity of storms 
such as winter blizzards and freezing rain storms [1].  

Several types of atmospheric icing deposits may load 
overhead cables including heavy adherent wet snow, hard 
rime, large but lightweight rime ice, and dense glaze ice [2]. 
Ice deposits on exposed structures can be the source of several 
mechanical problems. On overhead power lines in particular, 
the gravity loads due to heavy ice accretion, coupled with 
wind-on-ice loads, may lead to structural damages or failure 
and even cascading collapse of towers [2]. Therefore, in order 
to protect the line against loads resulting from accreted ice and 
to ensure the reliability of electrical power delivery networks, 
various mitigation methods have been used. A de-icing 
technique of interest, in this study, uses mechanical impulses 
to de-ice ground wires by taking advantage of the brittle 
behavior of ice at high strain rates [3]. 

This study therefore focuses on the dynamic analysis of 
iced overhead transmission lines subjected to in-span shock 
loads. Such in-span loads may result from the effect of an 

external shock load intended to remove accreted ice from the 
cable or from load imbalances due to sudden ice shedding. In 
particular, the dynamic response of iced cables under shock 
loads is studied by numerical modeling using nonlinear finite 
element analysis. The objective is to understand the 
phenomenon of mechanically-induced ice shedding on 
overhead line sections. Numerical studies of ice shedding on 
lines are scarce, and in most previous work [4-6], the response 
of the line to instantaneous shedding was modeled, whereas in 
this research, the propagation of ice shedding along the span 
as an “unzipping” effect is studied. 

II.  NUMERICAL MODEL ELABORATION 
In previous work [9, 10], the authors have presented a 

novel approach  to model the failure propagation of the ice 
deposit along the span by developing a special iced cable 
finite element that integrates the failure criteria of the ice 
deposit. In this section, the general numerical modeling 
approach originally proposed in [8] for transient analysis of 
overhead transmission lines using ADINA [12], and enriched 
in the last decades by collaborators [5-7], including our recent 
contributions, is summarized.  

A.  Cable modeling 
The cable is assumed to be perfectly flexible in bending 

and torsion; therefore it is represented by 3-D two-node 
isoparametric truss elements using the total Lagrangian 
formulation with large displacement kinematics but small 
strains [12, 13]. The cable material properties are linear elastic 
tension-only, therefore allowing slackening whenever the 
cable loses its pre-stressing force. The cable mesh density is 
selected to provide adequate sampling of the shock 
propagation through the integration points of the model. 
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B.  Accreted ice modeling 
Accreted ice on the cable is modeled as a separate beam 

element parallel to each cable element (Fig. 1). Each beam 
element has six degrees-of-freedom corresponding to the 
horizontal and vertical translations and the in-plane rotation. 
In order to avoid spurious stiffening of the system caused by 
fixed rotational boundary conditions at the supports, ice beam 
elements are omitted just next to the support nodes. It was 
found adequate to represent the accreted ice on the cable 
either by the 3-D iso-beam, the 2-D plane stress iso-beam or 
the pipe-beam elements with inelastic behavior.  

For the materially nonlinear iso-beam elements in ADINA, 
only rectangular cross sections can be considered, while this 
geometrical restriction does not apply to the pipe-beam 
element [12]. The use of the 2-D plane stress iso-beam ice 
model reduces the computational effort considerably, which 
may be important when complex models are used. However, 
numerical simulations [10, 11] showed that it may result in 
shear locking [13]. On the other hand, the 3-D iso-beam yields 
results that are very consistent with those obtained with the 
pipe-beam ice model, and in this study, the 3-D iso-beam 
element is finally selected to represent the accreted ice on the 
cable.  

 

 
Fig. 1.  Iced cable model representation (n – nodes) 

 

C.  Ice failure modeling 
The failure criteria of glaze ice in terms of axial and 

bending stress-strain relations, and strain rate effects are based 
on the mechanical properties of fine-grained freshwater ice 
published in the literature, since it is the best information 
available [11]. However, further refinements of the failure 
criteria of glaze ice deposits can be readily integrated into this 
model as they become available.  

Ice failure and subsequent shedding or detachment is 
modeled using the "element death upon rupture” option 
available in ADINA. For the beam ice elements used with the 
plastic bilinear material model, the element death option is 
automatically activated when the rupture criterion is fulfilled 
at any given integration point of the element. The ice material 
model is defined in ADINA by setting the Young’s modulus 
to 10 GPa, the Poisson’s ratio to 0.3, the density to 900 kg/m3, 
the initial yield stress to 2 MPa, and the maximum allowable 
effective plastic strain to 10-10.  

D.  Damping 
In this work, based on satisfactory results of previous 

studies [5-8], the aerodynamic damping is neglected and only 
axial structural damping of the cable is considered. Therefore, 

damping is modeled by using a non-linear axial spring 
element as a viscous discrete dashpot parallel to each cable 
element (Fig. 1). Besides this viscous structural damping, 
algorithmic (numerical) damping is also used to filter out 
spurious high frequencies of the response due to finite element 
discretization [9-11].  

E.  Other considerations 
The deformed iced cable profile is calculated beforehand 

using an increased density cable model as in previous studies 
[5-7]. This deflected static profile serves as the initial profile 
of the ice-cable composite model where the cable element is 
assigned the value of initial strain obtained from static 
analysis of the increased density cable model. Dynamic 
analysis is started from the static equilibrium profile obtained 
for the composite model. The Newmark direct implicit 
integration method is selected to solve the dynamic 
equilibrium equations, with the full Newton iteration method 
for stiffness updates. A lumped mass formulation is used 
throughout [12, 13]. 

III.  EXPERIMENTAL STUDY 
Experimental validation of ice shedding problems at the 

real scale is still incomplete as such tests are difficult and 
costly to achieve. Therefore, considering the lack of 
availability of a real-scale test line, a level single-span 
reduced-scale experimental model is proposed in an attempt to 
validate the numerical model. Despite that no direct 
correlation can be made between reduced-scale and real-scale 
lines due to high nonlinearities of the problem and the 
exaggerated sensitivities of the reduced-scale model, it is 
believed that the reduced-scale model can serve to analyze and 
better understand the problem. It is also believed that if the 
numerical results of the level single-span reduced-scale 
experimental model agree with those obtained experimentally, 
the modeling approach can be used for simulations of real-
scale lines as well. 

Spring-dashpot element 
n (n + 1) 

A.  Experimental setup 
The experimental setup is installed at the CIGELE icing 

precipitation simulation laboratory. This laboratory is 
equipped with a water spraying unit and housed in a 
refrigerated room where the air temperature is controlled and 
can reach -20 ºC [11]. The setup installed in front of the water 
spraying unit (Fig. 2) consists of two rigid supports mounting 
a flexible stainless steel cable (RR-W-410D) pin-ended to 
load cells using hinged arms (Fig. 3a). The length of the cable 
is defined to provide an initial sag-to-span ratio of 6% with a 
span length of 4 m. The shock load (impact) is provided by a 
pneumatic cylinder (Parker series 2A) (pneumatic shock load 
generator) installed at the cable mid span, which is part of a 
pneumatic system [11]. Horizontal and vertical components of 
the cable end-tensions are measured using low profile 
universal pancake load cells manufactured by FUTEK (model: 
LCF 450 – 500 lbf). The bridge excitation for each load cell is 
provided by a signal conditioner amplifier manufactured also 
by FUTEK (model: CSG110). The shock load is measured by 

Cable truss element 

Ice beam element 

n (n + 1) 
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an ICP® low-impedance quartz force sensor manufactured by 
PCB Piezotronics Inc. (model: N223M11 – 250 lbf). The 
force sensor is mounted on the tip of the pneumatic cylinder 
piston rod (Fig. 3b). Power to operate the sensor is provided 
by a signal conditioner manufactured also by PCB 
Piezotronics Inc. (model: 482A22). Analog to digital 
conversion is provided by a USB function module 
manufactured by Data Translation Inc. (model: DT9804). A 
measurement application is built using a commercial test and 
measurement application software called DT Measure 
Foundry [14]. A high speed digital camera manufactured by 
Kodak (model: EktaPro 1012) is used to capture the cable 
mid-span displacement.  

 
Fig. 2.  Schematic transverse view of the level single-span reduced-scale 
experimental setup and the water spraying unit configuration (A: center line of 
the setup; B: approximate cable height at mid span; C: water spraying unit)  

 
Fig. 3.  a) Pin-ended stainless steel cable end connection; b) ICP® force sensor 
installation (A: load cells; B: stainless steel cable; C: hinged arm; D: ball 
bearings; E: ICP® force sensor; F: mounting stud; G: piston rod; H: insulator 
covered air cylinder) 
 

B.  Description of a typical test 
A typical test sequence comprises four major steps: (1) 

producing a glaze deposit on the cable; (2) applying a shock 
load to the iced cable by actuating the shock load generator; 
(3) measuring and recording the characteristics of the shock 
load, the generated dynamic cable end-tensions and the cable 
mid-span displacement; and the (4) data processing. 
Experimental parameters that define the type and properties of 
ice in the icing precipitation laboratory [11] are controlled in 
order to obtain a glaze deposit with a density close to 900 
kg/m3 and to reduce the time needed for the ice formation.  

IV.  COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS 
Several icing scenarios were studied that comprise bare and 

iced cable models with 1, 2 and 4 mm of equivalent radial ice 
thickness [11]. However, in this paper, only results of the bare 
and an iced cable models with 4 mm of equivalent radial ice 
thickness are presented. The numerical and experimental 
results of the bare line subjected to a shock load are compared 
first in order to assess the parameters of the numerical model. 
A stainless steel cable with a diameter of 4.1 mm is used 
throughout the analyses.  

A.  Bare cable model 
In the experimental setup, the cable and the centers of the 

attachment points at the end of the span are aligned so that the 
cable is in the same plane along its entire length. Furthermore, 
the shock loading piston setup at the mid span is also aligned 
in the cable plane. Therefore, the numerical model is also 
represented in the same 2-D plane. At this stage of analysis, 
the flexibility of the supports is not modeled and the cable 
ends are assumed to be rigidly fixed. The cable material model 
is linear elastic tension-only with a constant axial rigidity 
(EA) of 2,275,680 N (MAT-1). In the model used here, the 
length of each cable element is found to be adequate by using 
a mesh of 25 elements, i.e. each element has a length of about 
0.16 m with a constant cross-sectional area of 13.2 mm2. The 
damping constant is set to represent an equivalent viscous 
damping of 2% critical. A value smaller than the one (3-5%) 
observed in an investigation based on free vibration 
measurements [11] is chosen because some numerical 
damping is also introduced as indicated in Section II. In order 
to provide adequate sampling of the shock wave as it travels 
through the cable finite element mesh, the time step is set to 
0.25 ms considering also the sampling rate of each parameter 
measured during the experiments. Several experimental tests 
were performed on the bare cable model at ambient 
temperature to investigate the nature of the problem and to 
obtain several data sets for comparison purposes. In this paper, 
comparisons of the numerical and experimental results of only 
one test with a measured shock load (Fig. 4) are presented. 
This shock load function serves as an input to the numerical 
model and is applied to the cable at mid span in the vertical 
upward direction.  

Figures 5a and b present comparisons between the time 
history of cable tension calculated by the numerical model and 
that obtained experimentally after the shock load of Fig. 4 was 
applied to the cable at t = 1.05 s. All values before t = 1.05 s 
represent the static response of the system subjected to its self-
weight. The static initial tension of the cable is 5.86 N. It is 
seen that the most severe dynamic effect occurs during the 
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Fig. 4.  Shock load characteristics 

first second following the shock load. Comparison of the 
time history of the cable tensions (Fig. 5a) shows general 
agreement between the calculated and measured values. 
However, the first peak value of cable tension obtained 
numerically is overestimated compared to that obtained 
experimentally (Fig. 5b). Comparisons of other results of this 
test series show the same discrepancy, i.e. the first peak value 
of cable tension obtained numerically is overestimated while 
the rest of the graph shows good agreement between the 
measured and calculated values. The problem is assumed to 
arise from the sensitivity of the numerical model to the 
flexibility of the cable end supports of the experimental setup, 
which is not considered in the numerical model at this stage of 
analysis, and also from the simplifying assumption in 
modeling the tensional rigidity of the cable. Comparisons of 
the time history of the cable mid-span displacements (Fig. 5c) 
reveal that the maximum cable jump at the mid span is 
accurately calculated by the numerical model. However, 
amplitude decay can be observed for the second and third 
peaks of the cable jump while there is agreement on the time 
scale. Zero displacement refers to the bare cable initial state.  

In order to study the sensitivity of the reduced-scale 
numerical model, a number of parametric studies were 
performed introducing support flexibility and a more realistic 
cable extension material model [11]. Support flexibility in the 
numerical model is introduced by modeling the hinged 
support arms with linear spring elements with arbitrary axial 
rigidity values. The more realistic cable extension material 
model is defined as a linear approximation of the experimental 
stress-strain curve of the cable in the region of prevailing 
loads. The cable was characterized using standard static 
tensile tests in accordance with ASTM A 931-96 (2002) [15].  

Sensitivity studies of the numerical model reveal that the 
most accurate predictions of the maximum cable tension are 
obtained when the effects of system flexibility that may arise 
from either the end supports or the cable itself are taken into 
account [11]. Both improvements tend to yield accurate results 
for the maximum cable tension: the more flexible the support 
is, the smaller the amplitude of the maximum cable tension, 
which shows convergence towards the experimental value. 
However, the results obtained for the maximum cable jump at 
mid span 

 
Fig. 5.  Comparison of numerical and experimental results of cable tension at 
the support and mid-span displacement: a) time history of cable tension; b) 
first peak of cable tension; c) vertical mid-span displacement 
 
show the reverse tendency i.e. stiffer supports yield more 
accurate predictions of the maximum mid-span displacement. 
Moreover, the displacements of the cable attachment points 
obtained in the numerical simulations with flexible supports 
were not observed in the physical tests. Therefore, it is 
assumed that the effect of system flexibility of the reduced-
scale experimental model derives essentially from the 
flexibility of the stainless steel cable used. 

The use of the improved cable material (MAT-2) model 
results in a decrease of 52% of the maximum cable tension 
(c.f. Fig. 5b and Fig. 6b) without severe distortion of the time 
history results (Fig. 6a). However, a shift of the period can be 
observed compared to that obtained by the numerical model 
using the initial (MAT-1) taut cable modeling approach (c.f. 
Fig. 5 and Fig. 6). Furthermore, the predicted cable mid-span 
displacement is also more accurate with the latter material 
model (c.f. Fig. 5c and Fig. 6c). These reverse tendencies can 
be explained by the fact that the displacements and tensions 
are not measured at the same location, and that when the 
shock load is applied to the cable at the mid span, a transverse 
as well as a longitudinal wave is generated that induces the 
maximum cable tension at the support. However, the energy 
of the shock load is dissipated much faster in a flexible cable 
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(in both tensional and flexural effects) than in a taut cable 
before hitting the supports, resulting in a smaller value of peak 
cable tension at the support. Nevertheless, when the cable is in 
vertical motion, it behaves as a taut cable. 

As a conclusion of these sensitivity studies, the 25-element 
numerical model is used in the remaining analysis of the iced 
cable using the taut cable material model (MAT-1 EA = 
2,275,680 N) to generate the time history results of mid-span 
displacement, and the flexible cable material model (MAT-2 
EA = 346,500 N) to obtain the time history results of cable 
tension at the support. 

 
Fig. 6.  Comparison of numerical and experimental results of cable tension at 
the support and mid-span displacement using MAT-2 cable material model: a) 
time history of cable tension; b) first peak of cable tension; c) vertical mid-
span displacement 

B.  Iced cable model 
Despite the fact that the cable and the shock load applied at 

mid span are practically in the same plane, a small out-of-
plane motion of the cable is observed during the experiments 
when the shock load is applied. Asymmetric ice accretion on 
the cable could not be avoided, which induced eccentric out-
of-plane forces. Nevertheless, accreted ice on the cable is 
modeled as a separate 3-D two-node iso-beam element with 
rectangular cross-section parallel to each cable element in the 
2-D plane, as described in Section II. The cross-sectional 
dimensions of the numerical ice-beam (W = 11.00 mm, H = 

7.09 mm) [13] are specified to yield a bending stiffness 
equivalent to the idealized tubular shape of accreted ice. Due 
to limitations of the spraying trajectory, 30 cm of the cable at 
both ends of the span remained ice free. Therefore, two ice 
elements are omitted at both ends of the span just next to the 
support nodes and fixed rotational boundary conditions are 
assigned to nodes 2 and 25 (Fig. 7). 
 

 
Fig. 7.  Schematic of the reduced-scale numerical ice-cable composite model 

Figure 8 shows the characteristics of shock load measured 
and defined as input to the numerical model for the ice-
shedding scenario studied.  

 
Fig. 8.  Shock load characteristics 

The time histories of Fig. 9 compare numerical and 
experimental results of cable tension and mid-span 
displacement, while Fig. 10 shows the rate of ice shedding in 
the span, i.e. the fraction of the ice shed in the span.  

The maximum cable jump at the mid span is accurately 
computed by the numerical model (Fig. 9c) but the numerical 
model predicts higher jumps for the second and third peaks 
compared to the experimental model. This is linked to the fact 
that the effective rate of ice shedding calculated by the 
numerical model is higher than that obtained experimentally 
(Fig. 10).  

In the experiments, effective ice shedding occurs at the mid 
span where the shock load is applied, on a length of about 25 
cm, as well as at a distance of about 37 cm from the point of 
impact in the two directions, on a length of only about 2 cm. 
However, a portion of the ice that remains attached to the 
cable is extensively cracked. This is due to the fact that the 
shock load applied at the mid span generates a transverse 
wave in the cable that (in contrast with real-scale lines [9-11]) 
quickly transforms into a longer vibrating loop with a wave 
length of about 74 cm that further expands to the whole span. 
Effective ice shedding takes place where the transverse wave 
propagation is directly observed and where the long vibrating 
loop forces the cable to bend significantly. Elsewhere 
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(highlighted in grey in Fig. 10) extensive cracking of the ice 
deposit is observed but shedding is not triggered due to the 
adhesive strength of ice on the cable, which is not considered 
in the numerical model. Therefore, when the failure criterion 
of the ice in terms of axial and bending stress-strain relations 
is fulfilled at any integration point, the ice element mass and 
stiffness contributions are removed from the model, i.e. 
effective ice-shedding is assumed to take place. Based on this 
failure criterion, comparisons of numerical and experimental 
results of ice shedding (Fig. 10) reveal that the rate and the 
location of the ice shedding are nonetheless satisfactorily 
calculated by the numerical model.  

 
Fig. 9.  Comparison of numerical and experimental results of cable tension at 
the support and mid-span displacement for the ice-shedding scenario studied: 
a) time history of cable tension; b) first peak of cable tension; c) vertical mid-
span displacement 

 
Fig. 10.  Rate of ice shedding obtained by ADINA and experiments for the 
ice-shedding scenario studied: a) iced cable before the shock load; b) cable 
after the shock load by ADINA; c) cable after the shock load by experiments 

V.  CONCLUSIONS 
Comparisons of numerical and experimental results 

indicate that the numerical model accurately calculates the 
dynamic response of iced cables subjected to shock loads. 
However, the reduced-scale model is highly sensitive to cable 
flexibility. Nevertheless, it is believed that no such degree of 
sensitivity characterizes a real-scale line. Furthermore, even if 
the numerical model does not consider the adhesive strength 
of ice deposit that appears to be important in the reduced-scale 
model, it seems that until the transverse wave and its 
propagation along the span is maintained, i.e. the ice deposit is 
subjected to a high level of bending, the occurrence of  
effective ice shedding from the cable is a reasonable 
assumption. This has been verified by numerical analysis of 
real-scale lines [9-11] and also in experimental studies 
performed by Hydro-Québec TransÉnergie on a 100-m test 
span of a ground wire [3]. Therefore, we conclude that the 
numerical model presented can accurately model the dynamic 
effects of shock-load-induced ice shedding on overhead lines 
when this transverse wave propagation is observed. However, 
experimental validation of the numerical model results on a 
real-scale line is paramount. 
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